148 research outputs found

    Parameterized Synthesis

    Full text link
    We study the synthesis problem for distributed architectures with a parametric number of finite-state components. Parameterized specifications arise naturally in a synthesis setting, but thus far it was unclear how to detect realizability and how to perform synthesis in a parameterized setting. Using a classical result from verification, we show that for a class of specifications in indexed LTL\X, parameterized synthesis in token ring networks is equivalent to distributed synthesis in a network consisting of a few copies of a single process. Adapting a well-known result from distributed synthesis, we show that the latter problem is undecidable. We describe a semi-decision procedure for the parameterized synthesis problem in token rings, based on bounded synthesis. We extend the approach to parameterized synthesis in token-passing networks with arbitrary topologies, and show applicability on a simple case study. Finally, we sketch a general framework for parameterized synthesis based on cutoffs and other parameterized verification techniques.Comment: Extended version of TACAS 2012 paper, 29 page

    Parameterized Synthesis Case Study: AMBA AHB (extended version)

    Full text link
    We revisit the AMBA AHB case study that has been used as a benchmark for several reactive syn- thesis tools. Synthesizing AMBA AHB implementations that can serve a large number of masters is still a difficult problem. We demonstrate how to use parameterized synthesis in token rings to obtain an implementation for a component that serves a single master, and can be arranged in a ring of arbitrarily many components. We describe new tricks -- property decompositional synthesis, and direct encoding of simple GR(1) -- that together with previously described optimizations allowed us to synthesize the model with 14 states in 30 minutes.Comment: Moved to appendix some not very important proofs. To section 'optimizations: added the model for 0-process. Extended version of the paper submitted to SYNT 201

    How to Handle Assumptions in Synthesis

    Full text link
    The increased interest in reactive synthesis over the last decade has led to many improved solutions but also to many new questions. In this paper, we discuss the question of how to deal with assumptions on environment behavior. We present four goals that we think should be met and review several different possibilities that have been proposed. We argue that each of them falls short in at least one aspect.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Synthesizing Robust Systems with RATSY

    Full text link
    Specifications for reactive systems often consist of environment assumptions and system guarantees. An implementation should not only be correct, but also robust in the sense that it behaves reasonably even when the assumptions are (temporarily) violated. We present an extension of the requirements analysis and synthesis tool RATSY that is able to synthesize robust systems from GR(1) specifications, i.e., system in which a finite number of safety assumption violations is guaranteed to induce only a finite number of safety guarantee violations. We show how the specification can be turned into a two-pair Streett game, and how a winning strategy corresponding to a correct and robust implementation can be computed. Finally, we provide some experimental results.Comment: In Proceedings SYNT 2012, arXiv:1207.055

    SAT-Based Methods for Circuit Synthesis

    Full text link
    Reactive synthesis supports designers by automatically constructing correct hardware from declarative specifications. Synthesis algorithms usually compute a strategy, and then construct a circuit that implements it. In this work, we study SAT- and QBF-based methods for the second step, i.e., computing circuits from strategies. This includes methods based on QBF-certification, interpolation, and computational learning. We present optimizations, efficient implementations, and experimental results for synthesis from safety specifications, where we outperform BDDs both regarding execution time and circuit size. This is an extended version of [2], with an additional appendix.Comment: Extended version of a paper at FMCAD'1
    • …
    corecore